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Motivating Data: Coffee Bean Exploration

- The coffee bean dataset records consumer ratings (0-10) on nine sensory attributes
(e.g., sweetness, aroma, acidity) and aggregates them by country. The dataset
consists of n = 32 countries in total.

- Data are publicly available from Kaggle https://www.kaggle.com/datasets/
adampq/coffee-quality-with-locations-of-origin?resource=download,
which itself is sourced from the Coffee Quality Instiute (CQI) database
https://database.coffeeinstitute.org/


https://www.kaggle.com/datasets/adampq/coffee-quality-with-locations-of-origin?resource=download
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Motivating Data: Coffee Bean Exploration

Heatmap of Coffee Ratings
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Motivating Data: Coffee Bean Exploration

- We hypothesise a few latent factors can be used to represent these observed ratings
e.g, latent axis representing aspects of coffee taste or richness. That is, we wish to
perform dimension reduction.

- Our interest is to perform statistical inference in this latent space e.g., do two
countries differ statistically in terms of coffee taste/richness? Is the "best” country
statistically different from the rest?




The Factor Analytic Model

Suppose we have n independent observations y;;i = 1,2,...,n, each of dimension p.
Assume the j-th response y;; can be written as (West et al., 2003)

T T
y” = Xj ,Bj + fi )\j + 67;]'7
where

* x; is a g-dimensional covariate and 3, the associated coefficients;

- f; is an m-dimensional latent factor assumed to be standard normal in distribution,
fiw ~ N(0,1);

- Aj is an m-dimensional loading vector. Furthermore, we define the loading matrix
A=[A1 Az - Al

- €; is an error term where we assume €;; ~ N(0,4;;).



The Factor Analytic Model

- We write the fully vectorised form of the factor analytic model as,

Yy = (I[)®X)ﬁ+(A®In)f+e7

T . .
where y = (Y11, ,Yn1, Y12, »¥Unp) » X = [x{ xJ ... x]]isan ¢ x n matrix,
T o7 4T\ T
/8 = (/81 352761)) r.f = (,flla"' 7,fn17,f127'" 7f71,p) and
T
€ = (Ella"' ;€nl, €12, 7€7Lp) .

- Marginally, we have
Yy~ Mlp ((Ip ®X) /8,V®In) )

where V.= AAT + ¥ is the marginal variance of each observation y;, and we call
0= [vec(A)T,diag(\Il)T]T the variance components.



Model Identifiability

- Without any constraints on the loading matrix A, the factor model is not identifiable,
since for any orthogonal matrix M, the transformed loading matrix AM vyields the
same covariance structure and the same likelihood (Mardia et al., 1979).

- We put a corner constraint on the loading matrix by setting the upper-triangular
elements of A to zero, and restrict the diagonal elements of A to be positive.



Parameter Estimation and Factor Prediction

Given variance component 6,

- the MLE of B is
B=(LeX X)Xy,
- the best linear unbiased prediction (BLUP) (Searle et al.,, 2009) of f is

F-Elfyl=(ATV'0L) (y- (,®X)3).

In practice, we can plug in estimated values of 8 (e.g. obtained via REML (Corbeil and
Searle, 1976)) to obtain f.



General Mixed Parameters

We are interested in conduct simultaneous inference for a set of L general mixed
parameters. For known designed vectors ¢; and kg, the general mixed parameter (Reluga
et al, 2023) for level I = 1,..., L is given by

p=c B+ef

The BLUP for the general mixed parameter is then given by plugging 3 and £,
u=c/B+nrf,

and the empirical BLUP or EBLUP follows us

fu=c/B+xF.



Prediction Mean Square Error

- For levell = 1,..., L, the prediction mean square error (PMSE) o2(j1;) can be
decomposed as



Prediction Mean Square Error

- For levell = 1,..., L, the prediction mean square error (PMSE) o2(j1;) can be
decomposed as

E[(fu — m)?] = E[(@ — )] + El(fu — )] + 2E[(@ — fu) (fu — )]
= E[(u — MZ)Q] UQ(/M)
- Asn — oo the second term dominates the PMSE of fi;, where
(i) = k] k1 — k] (ATVIA) QLK + (e — (1, X )o) ' Qe — (I, ®X ) o))

whereo; = (VTIA®IL)Kk and Q =V ® (XTX)!
- We approximate 62(fu;) ~ 62(ji;), based on by plugging the estimated variance
components.



Basic Idea: CPI vs. SPI

- A cluster-level prediction interval (CPI) is an region C,_, such that it has probability
100(1 — «)% of covering the general mixed parameter for a single level.

P(ureCio) =1—a, Vie[L]



Basic Idea: CPI vs. SPI

- A cluster-level prediction interval (CPI) is an region C,_, such that it has probability
100(1 — «)% of covering the general mixed parameter for a single level.

P(ureCio) =1—a, Vie[L]

- A simultaneous prediction interval (SPI) is a region Z; _,, such that it has probability
100(1 — «)% of covering the general mixed parameters across all levels,

PluyeZi_o,Yle[L]) =1—a.



Constructing SPIs

- From the equation P(u; € Z;_,, V1 € [L]) = 1 — « Suggests a maximum ¢-type statistic:

a=P(u ¢ Ii_q e [L])
_[[b< — M >c1_a7ﬂle[L])>

()
=
=P = c1_ .
(z??’h o) |~ )

- Theoretically, the critical value ¢;_, is then the (1 — a)"-quantile of the maximum
t-type statistic i.e,,

Clq = inf{teR P(r<t) >1-af,

where 7 = max;—12__r|n|and 7, = ‘j;wi‘)’

- If ¢1_q IS known, the SPI can be constructed as

L
= X [ F e1—a6(fu)] -
=1

1



Approximate the Critical Value ¢;_,

We propose three ways to approximate the ¢;_,: the Bootstrap method, the Monte Carlo
method, and the Bonferroni method. In this talk, we will focus on the bootstrap method.
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Approximate the Critical Value ¢;_,

We propose three ways to approximate the ¢;_,: the Bootstrap method, the Monte Carlo
method, and the Bonferroni method. In this talk, we will focus on the bootstrap method.

1.

Fit the model and obtain the EBLUP ji; and the estimated PMSE & (ji;) for levels
l=1,2,...,L.

. Create B bootstrap datasets using the estimated parameters.
. For each bootstrap dataset, fit the model again to obtain the bootstrap version of

the maximum t-type statistics.

. Use the 1 — a quantile of the bootstrap empirical distribution of the maximum t-type

e e
statistics ¢f2,.

. Construct SPI using ¢5, and the results from Step 1, ZPS, = X[, [ F ¢P5,6(iu)] -



Application to Coffee Bean Data: 1-factor Model

Comparison of Predicted Factors by Country Loading Matrix
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Application to Coffee Bean Data: 2-facto

Two—Factor Model: Predicted Factors by Country
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Discussion

- Simultaneous inference can be useful in the context of factor analytic models, if we
want to perform (say) formal statistical inference on the latent variables.

- We proposed constructing SPI using a bootstrap approach. In simulations (not
shown), we show this generically performs better than simpler Monte Carlo- and
Bonferroni-based SPIs.

- In future work, we will run more simulations under more complicated models and
general mixed parameters, as well as investigate simultaneous inference the case of
non-Gaussian response factor analytic models.



Thank You!

Let's drink a cup of coffee and see whether
my research aligns with your tastes!

Questions?
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Appendix




The Monte Carlo Procedure

Using the mixed model equation, we find
3 _ N N1
l? o ?] ~ Ngp+nm (OqZH—nmv (ATK?lA + B) > ’

where A := [Ip ®X A@In], B = [Oq””’p 0‘”’”’”], and K := U ®1L,.

Onm, Xqp Inm
Therefore for a Monte Carlo Procedure, for s = 1,2,...,.5:
1. Sample [’? ﬂ from its asymptotic distribution.

2. Calculate the centred general mixed effect (u; — ) = ¢ (8 — 8)®) + k] (f — £)®

3. Calculate 7—1(\4)0 = max; [ G(Hl))( iy

Order TJ\jC for all s € [S] and find the upper 1 — a quantile as the empirical critical value

MC
Cl-a



Bonferroni Procedure

In a Bonferroni procedure, we directly approximate the critical value as
B2, =& (1 - &), where ®1(-) is the quantile function of the standard normal
distribution.
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Simulation Settings

- It is of interest to see how SPIs constructed by different methods behave under
different n, p, ¢, m, along with the true variance explained (VE) by the loadings

.
VE- ZAA)
tr(AA" + )

- We ran 200 simulation rounds for different combinations of (n, p, q, m, VE).

- The target of the intervals was all the latent variables in a one-factor model i.e,
L=n.
- We used B = 500 bootstrap datasets and S = 2000 Monte Carlo samples.

20



Simulation Results

Table 1: Summary of SPI methods across different simulation settings (p = 20, m = 1, ¢ = 3). The
nominal level of intervals is 0.95.

Setting Method (Intervals) ECP  Mean Len. Avg Var-Width (x1072)
Bootstrap SPI 0.949 1.30 0.13
n — 500 VE= 0.7 Monte Carlp SPI 0.913 1.26 0.11
' Bonferroni SPI 0.924 1.27 0.10
CPI 0 0.57 0.03
Bootstrap SPI 0.965 1.43 0.27
200 VE= O\ Monte Carlo SPI 0.915 1.35 0.22
' Bonferroni SPI 0.930 1.37 0.19
CPI 0 0.57 0.09
Bootstrap SPI 0.940 1.82 0.31
n — 500 VEZ 0.5 Monte Carlp SPI 0.935 1.78 0.25
' Bonferroni SPI 0.935 1.79 0.25

CPI 0 0.85 0.07

21



Takeaways from Simulations

- Bootstrap SPI performs well, achieving empirical coverage closest to the nominal
0.95 level.

- As sample size increases, Monte Carlo and Bonferroni SPIs are still slightly
undercovered.

- Lower VE increases uncertainty, resulting in longer interval lengths and larger
average variance of interval widths.

- CPI consistently fails to provide valid coverage, highlighting the necessity of
simultaneous inference.
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