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Motivating Data: Coffee Bean Exploration

• The coffee bean dataset records consumer ratings (0–10) on nine sensory attributes
(e.g., sweetness, aroma, acidity) and aggregates them by country. The dataset
consists of n “ 32 countries in total.

• Data are publicly available from Kaggle https://www.kaggle.com/datasets/
adampq/coffee-quality-with-locations-of-origin?resource=download,
which itself is sourced from the Coffee Quality Instiute (CQI) database
https://database.coffeeinstitute.org/
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Motivating Data: Coffee Bean Exploration

• We hypothesise a few latent factors can be used to represent these observed ratings
e.g., latent axis representing aspects of coffee taste or richness. That is, we wish to
perform dimension reduction.

• Our interest is to perform statistical inference in this latent space e.g., do two
countries differ statistically in terms of coffee taste/richness? Is the ”best” country
statistically different from the rest?
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The Factor Analytic Model

Suppose we have n independent observations yi; i “ 1, 2, . . . , n, each of dimension p.
Assume the j-th response yij can be written as (West et al., 2003)

yij “ xJ
i βj ` fJ

i λj ` ϵij ,

where

• xi is a q-dimensional covariate and βj the associated coefficients;
• fi is an m-dimensional latent factor assumed to be standard normal in distribution,
fik „ N p0, 1q;

• λj is an m-dimensional loading vector. Furthermore, we define the loading matrix
Λ “ rλ1 λ2 ¨ ¨ ¨ λps

J;
• ϵij is an error term where we assume ϵij „ N p0, ψjjq.
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The Factor Analytic Model

• We write the fully vectorised form of the factor analytic model as,

y “ pIp b Xqβ ` pΛ b Inqf ` ϵ,

where y “ py11, ¨ ¨ ¨ , yn1, y12, ¨ ¨ ¨ , ynpq
J, XJ “

“

xJ
1 xJ

2 . . . xJ
n

‰

is an q ˆ n matrix,

β “

´

βJ
1 ,β

J
2 ,β

J
p

¯J

, f “ pf11, ¨ ¨ ¨ , fn1, f12, ¨ ¨ ¨ , fnpq
J and

ϵ “ pϵ11, ¨ ¨ ¨ , ϵn1, ϵ12, ¨ ¨ ¨ , ϵnpq
J.

• Marginally, we have
y „ Nnp ppIp b Xqβ,V b Inq ,

where V “ ΛΛJ ` Ψ is the marginal variance of each observation yi, and we call
θ :“

“

vecpΛqJ, diagpΨqJ
‰J the variance components.
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Model Identifiability

• Without any constraints on the loading matrix Λ, the factor model is not identifiable,
since for any orthogonal matrixM, the transformed loading matrix ΛM yields the
same covariance structure and the same likelihood (Mardia et al., 1979).

• We put a corner constraint on the loading matrix by setting the upper-triangular
elements of Λ to zero, and restrict the diagonal elements of Λ to be positive.
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Parameter Estimation and Factor Prediction

Given variance component θ,

• the MLE of β is
β̂ “

`

Ip b pXJXq´1XJ
˘

y,

• the best linear unbiased prediction (BLUP) (Searle et al., 2009) of f is

f̃ “ E rf | ys “

´

ΛJV´1 b In

¯ ´

y ´ pIp b Xqβ̂
¯

.

In practice, we can plug in estimated values of θ̂ (e.g. obtained via REML (Corbeil and
Searle, 1976)) to obtain f̂ .
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General Mixed Parameters

We are interested in conduct simultaneous inference for a set of L general mixed
parameters. For known designed vectors cl and κl, the general mixed parameter (Reluga
et al., 2023) for level l “ 1, . . . , L is given by

µl “ cJ
l β ` κJ

l f

The BLUP for the general mixed parameter is then given by plugging β̂ and f̃ ,

µ̃l “ cJ
l β̂ ` κJ

l f̃ ,

and the empirical BLUP or EBLUP follows us

µ̂l “ cJ
l β̂ ` κJ

l f̂ .
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Prediction Mean Square Error

• For level l “ 1, . . . , L, the prediction mean square error (PMSE) σ2pµ̂lq can be
decomposed as

Erpµ̂l ´ µlq
2s “ Erpµ̂l ´ µ̃lq

2s ` Erpµ̃l ´ µlq
2s ` 2Erpµ̂l ´ µ̃lqpµ̃l ´ µlqs

“ Erpµ̂l ´ µ̃lq
2s ` σ2pµ̃lq.

• As n Ñ 8 the second term dominates the PMSE of µ̂l, where

σ2pµ̃lq “ κJ
l κl ´ κJ

l ppΛJV´1Λq b Inqκl ` pcl ´ pIp b XJqolq
JQpcl ´ pIp b XJqolq

where ol “ pV´1Λ b Inqκl and Q “ V b pXJXq´1.
• We approximate σ̂2pµ̂lq « σ̂2pµ̃lq, based on by plugging the estimated variance
components.
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Basic Idea: CPI vs. SPI

• A cluster-level prediction interval (CPI) is an region C1´α such that it has probability
100p1 ´ αq% of covering the general mixed parameter for a single level.

Ppµl P C1´αq “ 1 ´ α, @l P rLs

• A simultaneous prediction interval (SPI) is a region I1´α such that it has probability
100p1 ´ αq% of covering the general mixed parameters across all levels,

Ppµl P I1´α,@l P rLsq “ 1 ´ α.
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Constructing SPIs

• From the equation Ppµl P I1´α,@l P rLsq “ 1 ´α suggests a maximum t-type statistic:

α “ Ppµl R I1´α, Dl P rLsq

“ P
ˆˇ

ˇ

ˇ

ˇ

µ̂l ´ µl

σ̂pµ̂lq

ˇ

ˇ

ˇ

ˇ

ě c1´α, Dl P rLsq

˙

“ P
ˆ

max
l“1,2,...,L

ˇ

ˇ

ˇ

ˇ

µ̂l ´ µl

σ̂pµ̂lq

ˇ

ˇ

ˇ

ˇ

ě c1´α

˙

.

• Theoretically, the critical value c1´α is then the p1 ´ αqth-quantile of the maximum
t-type statistic i.e.,

c1´α “ inf
t

tt P R : Ppτ ď tq ě 1 ´ αu,

where τ “ maxl“1,2,...,L |τl| and τl “
µ̂l´µl

σ̂pµ̂lq
.

• If c1´α is known, the SPI can be constructed as

I1´α “

L
ą

l“1

rµ̂l ¯ c1´ασ̂pµ̂lqs .
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Approximate the Critical Value c1´α

We propose three ways to approximate the c1´α: the Bootstrap method, the Monte Carlo
method, and the Bonferroni method. In this talk, we will focus on the bootstrap method.

1. Fit the model and obtain the EBLUP µ̂l and the estimated PMSE σ̂pµ̂lq for levels
l “ 1, 2, . . . , L.

2. Create B bootstrap datasets using the estimated parameters.
3. For each bootstrap dataset, fit the model again to obtain the bootstrap version of
the maximum t-type statistics.

4. Use the 1 ´ α quantile of the bootstrap empirical distribution of the maximum t-type
statistics cBS

1´α.
5. Construct SPI using cBS

1´α and the results from Step 1, IBS
1´α “

ŚL
l“1

“

µ̂l ¯ cBS
1´ασ̂pµ̂lq

‰

.
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Application to Coffee Bean Data: 1-factor Model
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Application to Coffee Bean Data: 2-factor Model
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Discussion

• Simultaneous inference can be useful in the context of factor analytic models, if we
want to perform (say) formal statistical inference on the latent variables.

• We proposed constructing SPI using a bootstrap approach. In simulations (not
shown), we show this generically performs better than simpler Monte Carlo- and
Bonferroni-based SPIs.

• In future work, we will run more simulations under more complicated models and
general mixed parameters, as well as investigate simultaneous inference the case of
non-Gaussian response factor analytic models.
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Thank You!

Let’s drink a cup of coffee and see whether
my research aligns with your tastes!

Questions?
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Appendix



The Monte Carlo Procedure

Using the mixed model equation, we find
«

β̃ ´ β

f̃ ´ f

ff

„ Nqp`nm

ˆ

0qp`nm,
´

ÂJK̂´1Â ` B̂
¯´1

˙

,

where Â :“
”

Ip b X Λ̂ b In

ı

, B̂ :“

«

0qpˆqp 0qpˆnm

0nmˆqp Inm

ff

, and K̂ :“ Ψ̂ b In.

Therefore for a Monte Carlo Procedure, for s “ 1, 2, . . . , S:

1. Sample
«

β̃ ´ β

f̃ ´ f

ffpsq

from its asymptotic distribution.

2. Calculate the centred general mixed effect pµl ´ µqpsq “ cJ
l pβ̃ ´ βqpsq ` κJ

l pf̃ ´ fqpsq.
3. Calculate τ psq

MC :“ maxl
|pµl´µqpsq|

σ̂pµ̂lq
.

Order τ psq

MC for all s P rSs and find the upper 1 ´ α quantile as the empirical critical value
cMC1´α.
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Bonferroni Procedure

In a Bonferroni procedure, we directly approximate the critical value as
cBO1´α “ Φ´1

`

1 ´ α
2L

˘

, where Φ´1p¨q is the quantile function of the standard normal
distribution.
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Simulation Settings

• It is of interest to see how SPIs constructed by different methods behave under
different n, p, q,m, along with the true variance explained (VE) by the loadings

VE “
trpΛΛJq

trpΛΛJ ` Ψq
.

• We ran 200 simulation rounds for different combinations of pn, p, q,m,VEq.
• The target of the intervals was all the latent variables in a one-factor model i.e.,
L “ n.

• We used B “ 500 bootstrap datasets and S “ 2000 Monte Carlo samples.
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Simulation Results

Table 1: Summary of SPI methods across different simulation settings (p “ 20, m “ 1, q “ 3). The
nominal level of intervals is 0.95.

Setting Method (Intervals) ECP Mean Len. Avg Var-Width (ˆ10´2)

n “ 500, VE“ 0.7

Bootstrap SPI 0.949 1.30 0.13
Monte Carlo SPI 0.913 1.26 0.11
Bonferroni SPI 0.924 1.27 0.10

CPI 0 0.57 0.03

n “ 200, VE“ 0.7

Bootstrap SPI 0.965 1.43 0.27
Monte Carlo SPI 0.915 1.35 0.22
Bonferroni SPI 0.930 1.37 0.19

CPI 0 0.57 0.09

n “ 500, VE“ 0.5

Bootstrap SPI 0.940 1.82 0.31
Monte Carlo SPI 0.935 1.78 0.25
Bonferroni SPI 0.935 1.79 0.25

CPI 0 0.85 0.07
21



Takeaways from Simulations

• Bootstrap SPI performs well, achieving empirical coverage closest to the nominal
0.95 level.

• As sample size increases, Monte Carlo and Bonferroni SPIs are still slightly
undercovered.

• Lower VE increases uncertainty, resulting in longer interval lengths and larger
average variance of interval widths.

• CPI consistently fails to provide valid coverage, highlighting the necessity of
simultaneous inference.
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